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SOME NEW SATURATED TWO-LEVEL DESIGNS

1. INTRODUCTION

In many experiments the goal is to determine which of many
independent variables (or experimental factors) xy, X2, ..., Xp have the
largest effects on the dependent variable y. A common strategy for such
problems is to approximate the relationship between y and the process factors
by the first-order polynomial

y = Bo+§13jxj+€, (1)
i=

where the random error € has mean zero and variance a2. The coefficients of

the polynomial (1) are estimated from data collected during n experimental
runs of the process; the settings of the x’s for the n experimental runs are
given by the nXv design matrix D. To estimate the coefficients of the
polynomial, the design matrix is expanded into a model matrix X that has an
additional column which represents the constant term. The estimate b of the
coefficient vector is then obtained from the least-squares formula

b= (XX)!XYy. )

The two-level designs of Plackett and Burman (1946) are widely used to
estimate the coefficients in (1). These designs are saturated designs because
they estimate the effects of v variables using n=v+1 design points
(experimental runs). The Plackett and Burman (1946) designs are only
available, however, for n=0 mod 4. The usual strategy when v +1 is not a
multiple of 4 is to use the next larger Plackett and Burman design by ignoring
1, 2, or 3 design columns. There are times when one wishes to minimize the
number of experimental runs for cases where v +1# 0 mod 4. Much of the
work that has been done for such cases has been too theoretical to receive
widespread use. For example, the designs were developed to maximize a




single design criterion—the determinant of X'X. Lin (1993) reviewed this
theoretical work, and proposed some practical properties that such designs
should have. Lin (1993) then developed some designs that had those
properties. I discuss design properties and criteria for comparing designs in
Section 2. In Section 3, I propose two methods for finding two-level
saturated designs. Sections 4, 5, and 6 present new saturated two-level
designs for the cases n=2 mod 4, n=1 mod 4, and n=3 mod 4, respectively,
and compare the designs to Lin’s (1993) designs.

2. DESIGN CRITERIA

The D-efficiency of a design for estimating p parameters is the pth root
of the ratio of det(X X)/n? to the maximum possible value of det(X’ X)/nP for
any design covering the same region. For two-level saturated designs where
the levels are coded -1 and 1, this definition reduces to

D -eff. = [det (X X)]V" /n . (3)

The G-efficiency of a design is defined as p/V (X)n. , Where p is the
number of parameters in the model and V(X)pn,, is the maximum value of
V(x) = n x'(XX)Ix for any point x in the experimental region. The variance
of y at x is V(x)6?/n, so the G-efficiency of a design compares the maximum
value of V(x)=n Var[y | x]/c® within the experimental region to its

theoretical minimum, which is p. For saturated designs, the formula for
G-efficiency becomes

G -eff. = 1/x' (X X)Ix (4)

where x is the point of maximum prediction variance. G-efficiency is a more
sensitive criterion than D-efficiency: a design can have a high D-efficiency
and a low G-efficiency, but not vice versa. Generally, the point of maximum
prediction variance is found at the boundary of the expermental region. In
this report, I consider the region of the saturated two-level designs to be a
sphere of radius v'/2. This choice is well founded because an orthogonal
first-order design is also a rotatable design-—meaning that the prediction
variance is constant on on the surface of a sphere centered at the design
origin. An orthogonal first-order design has a G-efficiency of 1 over a




spherical region. In a sense, the G-efficiency measures the extent to which a
first-order design deviates from orthogonality. G-efficiency could be
criticized as a criterion for our two-level designs if the maximum prediction
variance occurred at a point like (v V2 0, 0,..., 0), but in no case did this
happen. The worst G-efficiencies in this report are for Lin’s (1993) designs
for n=3 mod 4; for those designs the point of maximum prediction variance
is actually at a vertex of the cube. Hence, for those designs, it makes no
difference if the experimental region is considered to be a sphere, a cube, or
the vertices of the cube (as would be appropriate if the factors were discrete).

Another measure that can be used to judge the deviation of a first-order
design from orthogonality is the maximum variance inflation factor. A
variance inflation factor (VIF) measures how much the variance of an
estimated coefficient in the model has been inflated by the nonorthogonality
of the design. The variances of the estimated coefficients are given by o?
times the diagonal elements of (X'X)™\. If a two-level design with levels -1
and 1 is orthogonal, the variance of the estimated coefficients is 02/n. Hence
the variances of the estimated coefficients are inflated by n times the diagonal
elements of (X'X)'l. When the VIF’s for the estimated coefficients are not all
the same, the largest VIF is taken as a measure of the nonorthogonality of the
design.

‘Following previous theoretical work, Lin (1993) considered only the
D-efficiency of designs. He did, however, restrict his search for designs by
requiring that the designs have some properties of practical importance.
First, he required that, for even n, there be the same number of 1's and -1's
in each column and, for odd n, the number of 1's and -1's differ by only 1.
He called this requirement (near) equal-occurrence. He also put limits on the
absolute size of s;;, the sum of cross products between columns i and j of the
design matrix; he referred to this property as near orthogonality. Lin’s (1993)
motivation for selecting designs with these properties was to find designs
that are efficient for submodels containing only a few of the factors.
However, I believe that the efficiency for submodels must be secondary to the
efficiency for the full model. Further, for both Lin’s (1993) designs and the
new designs in this report, submodels for a few factors tend to have higher
efficiencies than the full model, so the concern over the efficiencies of
submodels does not seem warranted.

A property that I would use in selecting a design for application is that
of equal precision—by which I mean that the variances of the estimated




coefficients (except for the constant term) are all equal. Saturated two-level
designs are used in situations in which many factors are believed to influence
the response y, but it is not known which factors have large effects and
which factors have effects small enough to be ignored. The analysis of the
data from the designed experiment is essentially to rank the factors from
most important to least important. The ranking may be done either by 1b;1,
or by 1b;1/c;, where c; is the square root of the diagonal element of (X X)‘1
correspondmg to x;. The first method ranks the factors by the absolute size
of their effects on the response y, the second by a quantity proportional to
the t-test for the significance of the factor. When the ¢; (or, equivalently, the
VIF’s) are all the same, the B j are all estimated with equal precision, and the
ranking of the factors is unambiguous.

3. DESIGN CONSTRUCTION

Lin (1993) generated designs by starting with a randomly selected
column and appending, by a computer search algorithm, additional columns
so that the designs will have the near orthogonality property; all columns
must have the (near) equal-occurrence property. By examining the Plackett
and Burman (1946) designs, I developed two methods of generating saturated
two-level designs. The Plackett and Burman designs for n < 24 are obtained
by cydlically permuting the first row, and then appending a row of -1's.
One can use this technique for n #0 mod 4, by trying all 2° combinations of
-1's and 1’s for the first row, forming the design by adding the cydlic
permutations and a row of -1's, then rejecting those designs that do not
have the (near) equal-occurrence and near orthogonality properties. (This
brute force algorithm can be improved in several ways, but the improvements
will not be discussed in this report.) One must then calculate the efficiencies
of the designs to select the best design; it is possible for a cyclic design
having the (near) equal-occurrence and near orthogonality properties to be
singular. (This phenomenon shows the weakness of using the size of the
s;j—which are the individual elements of X 'X—to judge the nonorthogonality

of the design.)

The Plackett and Burman (1946) designs are related to balanced
incomplete block (BIB) designs. For example, consider the Plackett-Burman
design for n =8, whose first row is 1,1, 1, -1, 1, -1, -1. The location of the
1's (1, 2, 3, 5) indicate the treatments in the first block of a cyclic BIB design




(v =b=7, r =k =4) and the location of the -1's (4, 6, 7) indicate a block of the
complementary cyclic BIB design (v =b=7, r =k =3). [The first block of the
design for k =3 is usually written as (1, 2, 4), which can be obtained by
reading the first row of the Plackett-Burman design backwards (from right to
left); every cyclic pattern works both forwards and backwards.] For n+#0
mod 4, we will have to use partially balanced incomplete block (PBIB) designs
to construct saturated, two-level designs. The treatments in the blocks of the
PBIB design will indicate the location of the -1's in the first v rows; the last
row will be all -1's. The PBIB designs must have v =b and r =k; r must be
chosen so that the saturated designs have the (near) equal-occurrence
property. One can calculate the s;'s directly from the N's of the PBIB
design. If i and j are uth associates, then s;; =b-4r +4\, +1. Lin (1993)
discusses the possible values for s;;. For n=2 mod 4, I required that Is;; |
take its minimum possible value, 2. For n odd, I required that the s;; be -3
and 1, or -1 and 3; it is generally not possible to obtain the absolute value of
both s;;'s equal to 1. For n=2 mod 4, I was able to find (or easily construct)
PBIB designs that give satisfactory saturated designs up to n =50, with the
exceptions of n =34 and n =46. For odd n, very few PBIB designs with the
required parameters were available, so the technique of trying all cydlic
patterns was used to construct saturated designs.

4. DESIGNS FOR n=2 mod 4

Table 1 compares Lin’s (1993) designs and the PBIB-based designs for
n=2 mod 4 by their D- and G-efficiencies and by their VIF’s. Lin (1993) did
not give his design for n =30, so I was not able to find its G-efficiency or its
maximum VIF. The only designs of Lin’s (1993) for even n that have the
equal-precision property are his designs for n =14 and n =26; those designs
are isomorphic to the PBIB-based designs. (Lin’s design for n =30 cannot be
isomorphic to the PBIB-based design because the average value of s,-]Z, which
was reported by Lin (1993), is different for the two designs.) The PBIB-based
designs are equal to or better than Lin’s (1993) designs by the three criteria
D-efficiency, G-efficiency, and VIF; the PBIB-based designs also have the
equal-precision property in all cases. The patterns for the cyclic PBIB-based
designs (along with other cyclic patterns) are given in Table 2. For the case
n =10, there is a cyclic-type saturated design that may be preferred to the
PBIB-based design of Table 1. The cyclic design has a D-efficiency of .866, a
G-efficiency of .426, and a VIF of 1.37 for all terms (except the constant term)




Table 1. Comparison of Designs for n=2 mod 4.

Lin’s Designs PBIB-based Designs
n v D-eff. G-eff. VIF D-eff. G-eff. VIF type

6 5 763  .170 3.00° 763 .291 2.00 cyclic
10 9 .815 .294 1.71° 837 426 1.50 L,
14 13 876  .503 1.33 .876  .503 1.33 cyclic
18 17 .891  .280 1.43° 901 556 1.25 cyclic
2 21 .858  .115 3.32° 934 736 1.14 triangular

26 25 929 625 1.17 929  .625 1.17 Ly
30 29 .938 ? ? 938  .649 1.14 cyclic
38 37 950 .686 1.11 cyclic
42 41 955  .700 1.10 cyclic
50 49 962 724 1.08 L,

& Maximum variance inflation factor.

of the first-order model. The pattern for the cyclic design is given in Table 2.

The triangular PBIB design required for the case n =22 is given in
Table 3. To obtain the saturated, two-level design assign a -1 to the variables
listed in a block and a 1 to the remaining variables and append a final row of
-1's.

PBIB designs of the Latin square type are denoted as L, if they are
based on the rows and columns of a square; L3 if they are based on the rows,
columns, and Latin letters of a Latin square; and L, if they are based on the
rows, columns, Latin letters, and Greek letters of a Greco-Latin square. The
numbers 1 to v, which represent the treatments, are written into a square
(any order may be used). The first associates of a treatment are those
treatments which share a row, a column, a Latin letter (if type L), or a Greek
letter (if type L,) with the given treatment.

The three Latin square type PBIB designs referred to by Table 1 have
the same, simple construction: the treatments in the ith block are the first
associates of treatment i. Hence by writing out the first associates of each
treatment, we also have the treatments in every block.




Table 2. Patterns for Cyclic Designs.

n v Location of -1's in First Row.
3 2 1
5 4 1
6 5 1,5
7 6 1,2,4
9 8 1,2,4
10 9 1,3,4,8
11 10 1-4,7
13 12 1,2,4,6,7
14 13 1,2,5,9,12,13
15 14 1-4,6,10
17 16 1-4,6,9,13
17 16 1-3,5,10,11,15 (s;; < 5)
18 17 2,3,4,6,12,14,15,16
19 18 1-4,6,7,10,12,14
21 20 1-5,8,11,13,17
22 21 1-5,7,10,11,15,17
23 22 1-5,9,10,12,15,19
25 24 1-6,9,12,14,16,21,22
- 26 25 1-5,7,8,11,16,18,20,21
27 26 1-6,10,15,17,20,21,23
29 28 1-5,10,14,15,17,21,24,25,27
30 29 1,3-5,7,12,13,17,18,23,25-27,29
38 37 1,2,4-6,11,13,14,17,21,24,25,27,32-34,36,37
42 41 1,3,5,11-13,16,17,19,20,22,23,25,26,29-31,37,39,41

Cyclically permute the first row to make v rows; append a row of -1’s.

The L, type PBIB design for the n =50 case requires a 7X7 Greco-Latin
square. To make a 7X7 Greco-Latin square, place the Latin letters on
diagonals from upper right to lower left [so that the other treatments that
share the same Latin letter with a given treatment are found by repeatedly
going down 1 row and left 1 column from the given treatment, cycling back
to the top or to the right when necessary]; then the other treatments that
share the same Greek letter can be found by going down 1 row and left 2
columns, cycling back to the top or to the right when necessary.




Table 3. Triangular PBIB Design

Block Treatments in Block
1 2 3 4 5 7 8 1112 1617
2 1 3 4 6 7 9 1113 1618
3 1 2 5 6 8§ 9 1213 17 18
4 1 2 5 6 710 1114 16 19
5 1 3 4 6 8§10 1214 17 19
6 2 3 4 5 910 1314 18 19
7 1 2 4 8 910 1115 16 20
8 1 3 5 7 910 1215 17 20
9 2 3 6 7 810 1315 18 20
10 4 5 6 7 8 9 1415 19 20
11 1 2 4 7 1213 1415 16 21
12 1 3 5 8 1113 1415 17 21
13 2 3 6 9 1112 1415 18 21
14 4 5 610 1112 1315 19 21
15 7 8 910 1112 1314 20 21
16 1 2 4 7 1117 1819 20 21
17 1 3 5 8 1216 1819 20 21
18 2 3 6 9 1316 1719 20 21
19 4 5 610 1416 17 18 20 21
20 7 8 910 1516 1718 19 21
21 1112 1314 1516 1718 19 20

5. DESIGNS FOR n=1 mod 4

With the exception of n =13, designs isomorphic to Lin’s (1993) designs
for n=1 can be obtained by appending a row and a column to a Plackett and
Burman (1946) design; Lin gives row vectors r and column vectors q’ in his
Table 1. The row vectors for n =17 and n =21 in Lin’s Table 1 are incorrect;
both the row and column vectors for n =25 and n =29 are also incorrect.
Using m (1) to indicate m occurrences of 1, the correct row vector for n =17 is
2(1), 8(-1), 1, -1, 3(1); for n =21 the correct r is 4(1), 10(-1), 5(1). For n =25,
r=2(1), 3(-1), 1, -1, 1, 9(-1), 2(1), -1, 3(1) and q' =4(-1), 2(1), 6(-1), 1, -1,
10(1). For n =29, r=6(1), 2(-1), 1, 3(=1), 2(1), -1, 1, =1, 2(1), 2(-1), 3(1), 2(-1),
1and q’ = 4(1), 3(-1), 3(1), -1, 4Q1), -1, 1, -1, 2(1), -1, 1, 6(-1).



Table 4 compares Lin’s (1993) designs for n=1 mod 4 to some new
designs obtained by trying cyclic patterns.

Table 4. Comparison of Designs for n=1 mod 4.

Lin’s Designs Cyclic-based Designs
n v D-eff. G-eff. VIF D-eff. G-eff. VIF
5 4 941 .800 1.11 941  .800 1.11
9 8 .932 472 1.47° .888 471 1.32
13 12 977 .923 1.04 876  .324 1.43
17 16 .954 .400 1.68° 919 246 1.24

17 16 .904 525 1.21¢
21 20 .963 .406 1.68° 939 465 1.15
25 24 969 .424 1.65° 937  .466 1.16
29 28 974 .450 1.61° 956  .538 1.10

2 Maximum variance inflation factor.
b This alternative design has some s;; = 5.

Of Lin’s designs for n=1 mod 4, only those for n =5 and n =13 have the
equal-precision property; designs formed by a cydlic pattern and a row of
~1's always have the equal-precision property. Lin’s design for n =5 and the
cyclic design are the same design. Lin’s design for n =13 is very good; it has
X'X=(n-1)1,+J,, where I, is an nXn identity matrix and J, is an nXn
matrix of 1's. That pattern for X'X is only possible if 21 -1 is the square of
an integer. Lin’s design for n =13 can be obtained from the PBIB design
denoted SR41 in the catalog of Clatworthy (1973). As usual, the treatments in
a block of the design (Table 5) indicate the locations of the -1's in the first b
rows. The PBIB design SR41 has b =9, but we need n =13 rows, so four extra
rows must be added (instead of the usual row of -1's). In the four added
rows, three variables corresponding to a group of first associates are assigned
1's and the remaining nine variables are assigned -1's. The four groups of
first associates are (1, 5, 9), (2, 6, 10), (3, 7, 11), and (4, &, 12).

Two cydlic designs are given for n =17. The first was the result of the
usual search where all |s; | are required to be less than or equal to 3. The
resulting design was not appealing because of its low G-efficiency, so another
search, allowing |s;; | to be as large as 5 was tried. The first design has 24




Table 5. PBIB Design SR41
Block Treatments in the Block

1 1 2 3 4
2 1 6 7 8
3 1 10 11 12
4 2 5 8 11
5 2 7 9 12
6 3 5 6 12
7 3 8 9 10
8 4 5 7 10
9 4 6 9 11

sij = -3 and 96 s; = 1, the second design has 32 5;; = -3, 80 5;; = 1, and 8
s;j = 5. Clearly the second design is worse by the ave (s,-]g) criterion used by
Lin (1993), but it may be preferred because of its better G-efficiency and
lower VIF.

6. DESIGNS FOR n=3 mod 4

Lin’s (1993) designs for n=3 mod 4 are obtained by deleting a row and
a column from a Plackett and Burman (1946) design. It does not matter
which row and column are deleted; the resulting designs are isomorphic.
However, by deleting the last row, the designs have XX = (n+1)I, -J,.
Lin (1993) found that the D-efficiency of these designs is (n + 1)~ V" /n,
which is a monotonically increasing function of n; however, a more thorough
evaluation of the designs would have discovered that their G-efficiency is
1/n, which is a monotonically decreasing function of n. Thus the pattern

(n+1)I, -], for XX is seen to be undesirable, despite having low
correlations between pairs of variables.

Table 6 compares Lin’s designs for n=3 mod 4 to some designs
obtained from cyclic patterns. Lin’s design for n =3 and the cyclic design are
isomorphic. The cyclic design for n =7 is a cyclic PBIB design [it is also a
regular group divisible PBIB design; Clatworthy (1973) lists it as R42].
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Table 6. Comparison of Designs for n=3 mod 4.

Lin’s Designs Cyclic-based Designs
n v D-eff. G-eff. VIF D-eff. Ge-eff. VIF

3 2 .840 .333 1.50 .840 333 1.50

7 6 .849 .143 1.75 .878 571 1.30
11 10 .870 .091 1.83 .890 384 1.30
15 14 .887  .067 1.88 910 483 1.21
19 18 .899  .053 1.90 940 .640 1.13
23 22 909 .043 1.92 946 624 1.11
27 26 917  .037 1.93 949 601 1.11

Attempts to find designs with higher G-efficiencies for the cases n =11 and
n =15 by allowing the values of Is;; | to be as large as 5 did not succeed.
Although Lin’s designs for n=3 mod 4 have the equal-precision property,
they will probably not be used because of their low G-efficiencies.
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